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Abstract: Stripe artifacts can deteriorate the quality of light sheet fluorescence microscopy
(LSFM) images. Owing to the inhomogeneous, high-absorption, or scattering objects located in
the excitation light path, stripe artifacts are generated in LSFM images in various directions and
types, such as horizontal, anisotropic, or multidirectional anisotropic. These artifacts severely
degrade the quality of LSFM images. To address this issue, we proposed a new deep-learning-
based approach for the elimination of stripe artifacts. This method utilizes an encoder–decoder
structure of UNet integrated with residual blocks and attention modules between successive
convolutional layers. Our attention module was implemented in the residual blocks to learn useful
features and suppress the residual features. The proposed network was trained and validated by
generating three different degradation datasets with different types of stripe artifacts in LSFM
images. Our method can effectively remove different stripes in generated and actual LSFM
images distorted by stripe artifacts. Besides, quantitative analysis and extensive comparison
results demonstrated that our method performs the best compared with classical image-based
processing algorithms and other powerful deep-learning-based destriping methods for all three
generated datasets. Thus, our method has tremendous application prospects to LSFM, and its use
can be easily extended to images reconstructed by other modalities affected by the presence of
stripe artifacts.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Light sheet fluorescence microscopy (LSFM) is an optical sectioned fluorescence microscopic
technique that can be used for fast and high-resolution imaging of biomedical samples with low
photobleaching responses [1,2]. Currently, LSFM is extensively used in neurology [3], vascular
analysis [4,5], and whole-body imaging [6]. However, stripe artifacts caused by high-absorption
or scattering structures, such as impurities or bubbles, in the excitation light path or inside the
sample result in image degradation in the application of LSFM [7].

Several techniques have been developed to eliminate stripe artifacts in LSFM images, which
can be classified into hardware modification and image-based processing types [8]. In the
cases of hardware modifications in LSFM systems, Dong et al. [9] improved the image quality
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and reduced stripes in unidirectional LSFM by developing a vertically scanned LSFM method.
Two parallel light sheets are used in the bidirectional LSFM system from both sides of the
sample to eliminate the stripes [10]. Similarly, multidirectional LSFM averages images from
different illumination directions and eliminates the stripes [11]. Ren et al. [12] proposed a novel
approach called coded light-sheet array microscopy (CLAM), which allows complete parallelized
3D imaging without mechanical scanning, minimizing the illumination artifacts originated in
highly scattering tissue. Besides, Ricci et al. [13] adopted acousto-optic deflectors (AODs)
in LSFM to reduce the stripe artifacts in the images. Although modified LSFM systems can
generate homogenous fluorescence excitation, additional hardware and alignment requirements
will considerably increase the complexity of the LSFM system. More importantly, the modified
LSFM system may still suffer from stripe artifacts in low-brightness or dense samples [6].

In addition to the aforementioned hardware modification techniques, several image-based
processing algorithms have also been suggested to eliminate stripe artifacts [14,15]. Fehrenbach
et al. [16] treated the elimination of stripes as a restoration problem and proposed the variational
stationary noise remover (VSNR) method that removes stationary noise (such as that manifested in
the form of stripes). In addition, Münch et al. [17] combined fast Fourier transforms and wavelet
to filter out stripe noise. Liang et al. [18] designed a multidirectional stripe remover (MDSR)
method, which applied a fast Fourier transform in the nonsubsampled contourlet transform
domain to shrink the stripe components. Pollatou et al. [19] proposed a novel destriping
method of stitched biological images based on the location of the stripe artifacts, background
modeling, and illumination correction. Although these image-based algorithms can effectively
remove stationary stripe artifacts, it is still challenging to remove artifacts that appear in random
directions, as shown in Fig. 1.

Deep learning (DL) methods have been reported to significantly outperform conventional
image processing algorithms in light microscopy, including microscopy image restoration [20],
enhancement [21], super-resolution reconstruction [22,23], deconvolution [24], and microscopy
image segmentation [25,26]. Wang et al. [20] proposed a UNet structure model to correct
aberrations induced by the refractive index of fluorescence microscopy images. Instead of using
a deeper convolutional neural network (CNN), Cai et al. [27] achieved state-of-the-art deblurring
performance by utilizing deep residual networks (DRNs) to increase the network depth in dynamic
motion deblurring for natural images. Abdallah et al. [28] proposed Res-CR-Net, which is a
DRN, for the semantic segmentation of microscopic images. Although these pilot studies have
shown promising results for image restoration and enhancement, deep-learning-based destriping
of LSFM images has yet to be explored.

In this study, we propose an attention-based residual network (Att-ResNet) comprising residual
blocks with a self-attention mechanism to efficiently eliminate stripe artifacts in LSFM images.
We adopted the UNet architecture as the backbone of our network [29]. Residual blocks were
implemented between successive convolutional layers of the UNet to address the blurring problem.
To improve the performance of our network in the destriping task, a self-attention mechanism
was introduced in the residual blocks. The self-attention mechanism comprises spatial and
channel attention modules to learn sample features against stripe artifacts. Specifically, the spatial
attention module aims to extract useful sample features from LFSM images. The use of channel
attention is to exploit the features from different channels and remove the channels that originate
from stripe artifacts according to the channel weights. Herein, spatial and channel attention
modules were incorporated into the residual block to increase the efficacy of the proposed
network.

To validate the performance of our model, we developed a degradation model to generate
various stripe artifacts, including regular horizontal, anisotropic Gaussian nonhorizontal, and
multidirectional anisotropic Gaussian nonhorizontal stripes for simulating stripe artifacts in
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Fig. 1. (a) Illustration of the generation of stripe artifacts. (b) LSFM images are distorted
by different stripe artifacts.

LSFM images. Both qualitative and quantitative comparisons with other state-of-the-art deep-
learning-based and image-based algorithmic destriping techniques were conducted using the
generated datasets. The results showed that the proposed method can effectively reduce various
stripe artifacts. To the best of our knowledge, the proposed method is the first to address various
stripe artifact issues in LSFM images with the use of a unified DL framework [8]. Moreover, our
model was validated using external LSFM images of the mouse brain vessels [30], mouse colon
[31], and mouse carotid plaques [32]. In addition, compared with the classic algorithm-based
destriping methods, our method improves the processing speed by 60 times (compared with
MDSR) and 180 times (compared with VSNR), which takes approximately 1s to process each
image and thus enables fast destriping in LSFM images.

2. Methods

The main framework of our model was adopted from the UNet structure, as shown in Fig. 2(a).
The encoder–decoder structure with skip connections allows the recovered feature map to integrate
low-level features and aggregate features from different scales, so as to better distinguish the
sample information and stripe artifacts in the image and obtain the ideal output. The skip
connection integrates the features in the encoder and decoder through the concatenating of the
channels of the feature. And the skip connection retains more dimensional information, so that
the network can better learn from the abstract global features and the detailed local features. At
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the same time, in the decoder part, upsampling will cause the loss of edge information of the
feature map, and the edge feature can be retrieved by concatenating the feature from the encoder.

Fig. 2. Illustration of the structure of our method. (a) The main framework of the network
consists of the encoding and decoding structures of UNet with an attention block in the
middle of each layer. (b) Structure of the attention block is composed of the residual
block (blue part) and attention module (red part). There are different types of attention
modules, and their performances will be introduced and compared below. (c) Structure of
the convolutional block attention module (CBAM).

The model includes four downsampling and upsampling operations. Each layer of the model
consists of two 3 × 3 convolution operations and an attention module in the middle. The feature
dimensions of each layer were empirically determined by weighing the network performance and
network complexity based on the existing related work [20,29,33], which were 32, 64, 128, and
256 respectively. Finally, a 1 × 1 convolution layer transforms the resultant feature map from the
last block to the output image.
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2.1. Residual block

The motivation for adopting DRN is that the input (artifact-distorted LSFM images) and target
output (ideal LSFM images) are expected to have similar values and structures. In addition,
compared with plain CNN, residual networks contain identity mappings that prevent the gradient
exploding or vanishing problem, thus facilitating the training of a deeper network. Therefore, to
efficiently transform artifact-distorted images to artifact-reduced images, we used residual blocks
to learn the difference between the input and target output. The residual block was composed of
two convolution layers, a skip connection, and a rectified linear unit, as shown in Fig. 2(b).

2.2. Convolutional block attention module

To improve the model performance in the destriping task, we introduced an attention module that
contained the self-attention modules, as shown in Fig. 2(c). This attention module can increase
the modeling capacity of the network by assigning different weights to the features. Specifically,
based on the importance of different feature maps, the value is selectively attenuated or amplified.

We set the attention module as F and it works as follows,

Ī = I ⊗ F (I), (1)

where I ∈ RH×W×C and Ī ∈ RH×W×C are the input and output of an attention module, H, W, and
C refer to the height, width, and channel depth of the feature map, respectively, and ⊗ is an
element-wise matrix multiplication. Existing attention modules can be divided into channel-wise
and spatial-wise attention. Channel-wise attention obtains a vector v ∈ R1×1×C, which indicates
the importance of each channel. Meanwhile, spatial attention calculates the importance of each
pixel r ∈ RH×W×1 to determine the most important regions.

Herein, we applied a convolutional block attention module (CBAM) [34] in our model (see
Fig. 2(c)) and compared it with other attention modules, including global average pooling
(GAP), squeeze-and-excitation module (SEM) [35], channel attention module (CAM), and spatial
attention module (SAM). GAP is the simplest version of channel-wise attention and calculates
the average of each channel of the feature map. SEM [35] is also a channel-wise approach
that uses GAP as the squeeze operation, followed by two fully connected layers to model the
interrelationship between channels. CAM and SAM are the channel submodules of the CBAM
[34].

CBAM is composed of CAM and SAM as follows,

FCBAM(I) = I ⊗ FCAM(I) ⊗ FSAM(I ⊗ FCAM(I)). (2)

CAM utilizes GAP and global max pooling (GMP). GAP computes the channel-wise average
value of the given input, while GMP returns the maximum value of the input feature map,

FGMP(Ic) = max
h,w

Ic(h, w), 1 ≤ h ≤ H, 1 ≤ w ≤ W, (3)

where Ic ∈ RH×W , c ∈ {1, . . . , C} denotes the cth feature of the input. The outputs of GAP and
GMP are forwarded to a shared multi-layer perceptron, and the final output is calculated as
follows,

FCAM(I) = δ(MLP(FGAP(I)) ⊕ MLP(FGMP(I))), (4)

where ⊕ refers to an element-wise summation, and δ refers to sigmoid activation.
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SAM encodes the importance of pixel-wise dependencies. Two pooling operations are
employed to aggregate channel information,

savg(h, w) =
1
C

∑︂C

c=1
I(h, w, c), (5)

smax(h, w) = max
c

I(h, w, c), 1 ≤ c ≤ C, (6)

where smax ∈ RH×W and savg ∈ RH×W denote the spatial max pooling and spatial average pooling,
respectively. The output of the pooling operations is then concatenated and passed through a
convolutional layer and sigmoid activation to compute the SAM,

FSAM(I) = δ(Conv([savg ⊕ smax])), (7)

where ⊕ denotes the concatenating operation and Conv refers to a 3 × 3 convolution layer.

2.3. Loss function

We aim to eliminate stripe artifacts while preserving useful sample information from LSFM
images. To achieve this, we adopted the mean absolute error (MAE) and content loss [36] to
design our loss function.

MAE calculates the average of differences between the pixels of the output and the ground
truth

LMAE(I, Î) =
1

H × W × C

∑︂
h,w,c

|Îh,w,c − Ih,w,c |, (8)

where I is the output of our model, Î is the ground truth label, and H, W, and C refer to the
height, width, and channel depth of the image, respectively. The difference at the pixel level is
advantageous for the restoration of image intensity. However, MAE often ignores details, such as
patterns, edges, and small variations.

Meanwhile, the content loss compares the feature map of the output and ground truth with the
use of a pretrained feature extractor

Lcontent(I, Î) =
1

H × W × C

√︃∑︂
h,w,c

(ϕh,w,c(Î) − ϕh,w,c(I))
2, (9)

where ϕ denotes the feature map of the image. In our model, we used conv4-3 from the VGG-19
network [37] pretrained with ImageNet [38]as the feature extractor. This feature-level loss helped
preserve content information and image details.

The final loss function is expressed as follows,

Ltotal = LMAE + λLcontent, (10)

where λ is a constant and set to be 0.05 in our model.

2.4. Evaluation metrics

The MAE, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were employed
to evaluate the output image quality of the different methods. The MAE calculates the average
per-pixel differences between the ground truth label and output. Thus, the smaller the MAE, the
smaller the error between the ground truth label and the output. PSNR and SSIM are commonly
used for image restoration and pay more attention to the fidelity of the image, which were
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computed as:
MSE =

1
H × W × C

∑︂
h,w,c

|Îh,w,c − Ih,w,c |
2, (11)

PSNR = 20 · log10

(︃
MAX
√

MSE

)︃
, (12)

where MAX is the maximum intensity of image, I is the output of our model, Î is the ground truth
label, and H, W, and C refer to the height, width, and channel depth of the image, respectively.

SSIM =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ

2
Î
+ C1)(σ

2
I + σ

2
Î
+ C2)

, (13)

where µI and µÎ refer to the average value of I and Î, σI and σÎ refer to the standard deviation of
I and Î, C1 and C2 are two constants, and σIÎ is the covariance of I and Î. The higher the PSNR,
the better the image. The SSIM is a number that ranges from 0 to 1. The larger the result, the
more similar it is to the original image.

2.5. Implementation

Our model was developed based on the TensorFlow and Keras packages. Att-ResNet was
trained for 300 epochs using Adam optimizer with a batch size of two. The initial learning
rate was set at 0.001. The angle parameters of the two classic algorithm-based methods for
comparison were set according to a specific dataset, and the other parameters are set according to
the optimal parameters in [16,18]. The training parameters of the other two DL-based methods
were consistent with our network. In the training phase, only the DL methods were trained on
the three training datasets (σ =0.5), while during the testing phase, DL-based and algorithmic
methods were tested on the testing datasets constructed by different degradation models (σ =0.3,
0.5, 0.7). Our Att-ResNet can automatically remove artifacts, and it took approximately 1 s to
process each image.

3. Experimental datasets

3.1. Data acquisition

All animal studies and procedures were performed according to a protocol approved by the Chinese
People’s Liberation Army General Hospital Animal Care and Use Committee in accordance with
the National Institutes of Health Guideline on the Care and Use of Laboratory Animals.

The process of immunolabeling and tissue clearing of mouse brains were the same as in
[30]. The immunolabeled and cleared mouse brains were imaged on a commercial light sheet
fluorescence microscope (Ultramicroscope II, LaVision Biotec, Bielefeld, Germany) with a 5.0×
magnification, a 2× objective lens (Mv PLAPO2VC, Olympus), and a working dipping cap
distance of 6 mm, which led to an image size of 2560 × 2160 with a pixel size of 0.65 µm. For
the detection of brain vessels, the filters were set as follows: excitation 500/20 nm; emission
535/30 nm. The step size was set to 2 µm for z-stacks scanning and a total scan range of the
brain sample up to 1 mm. The measurements were performed with exposure times of 385 ms
per slice, resulting in a total acquisition time of ∼2 min per brain resection sample. The raw
LSFM images (saved in TIFF format) were processed using the ImageJ package FIJI (version1.51,
fiji.sc/Fiji, NIH, Bethesda, MD, USA). We collected coronal images of the resected mouse brain
samples, including 2601 images of the cortex, 2061 images of the hippocampus, 2221 images of
the cerebellum, and 1578 images of the olfactory bulb.
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3.2. Degradation model

To verify the performance of our network, we developed a degradation model to generate
various stripe artifacts to construct artifact-distorted image datasets [16,18]. We carefully
designed the stripe artifacts of the datasets to simulate various types of stripe artifacts, including
regular horizontal stripes, anisotropic Gaussian horizontal stripes, and anisotropic Gaussian
nonhorizontal stripes. The first dataset was generated with regular horizontal stripes, anisotropic
Gaussian horizontal stripes, and anisotropic Gaussian nonhorizontal stripes with angles of 45◦ or
135◦. For the second and third dataset, we simulate the stripe artifacts in the horizontal direction,
and the direction is randomly deflected based on the configuration of the commercial LSFM
system. Thus, we generated the second dataset, including anisotropic Gaussian stripe artifacts
with one random angle in [-11◦, 11◦]. The last dataset was generated using anisotropic Gaussian
stripe artifacts with two angles randomly distributed in [-11◦, 11◦]. The bound of stripe angle in
the second and the third datasets was chosen as per the configuration of the commercial LSFM
system. All the images with stripe artifacts were randomly generated to form a degradation pool.

3.3. Dataset construction

The workflow of the dataset is shown in Fig. 3. To facilitate the subsequent operation, the raw
image was first cropped to a size of 2048 × 2048, followed by image enhancement using a
histogram equalization algorithm. Subsequently, artifact-distorted images were generated by
randomly adding one of the artifacts from the degradation pool to the enhanced image. σ is a
coefficient representing the intensity of the added artifact images. The artifact-distorted 2048 ×

2048 image was divided into 16 images with a size of 512 × 512 pixels as the inputs. The ground
truth labels were collected to initiate the training process.

Fig. 3. Workflow of dataset construction. We applied a series of preprocessing steps to the
acquired LSFM image and added a degradation model to obtain the artifact-distorted images
and the corresponding ground truth label, which were used to train our network.

For the training dataset, we extracted 15 slices cropped with 2048 × 2048 in each of the
collected images of the cortex, hippocampus, cerebellum, and olfactory bulb to determine the
diversity of the dataset. After image division, we obtained 960 images of each degradation model
(σ =0.5), including 864 and 96 images as the training and validation datasets, respectively. For
the testing dataset, we extracted 60 slices from the collected images of the cortex, hippocampus,
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and cerebellum, and three degraded image groups with different σ (0.3, 0.5, 0.7) comprised of
25920 subdivided images were generated as testing datasets.

4. Experiments and results

4.1. Ablation study

To study the effectiveness of our network, an ablation study was conducted to investigate the
effects of the 1) position of the attention module, 2) different attention modules, and 3) content
loss. All ablation experiments were performed on the second testing datasets (σ =0.5) with
anisotropic Gaussian stripe artifacts with a random angle of [-11◦, 11◦].

4.1.1. Effect of the position of the attention module

We studied the model performance when the attention modules were added to different layers
(@ ith), which refers to the attention modules located at the ith layer in a UNet architecture.
ResNet refers to the standard UNet network with the addition of residual blocks between
successive convolutional layers. The attention modules used in this experiment were CBAMs.
The experimental results are summarized in Table 1.

Table 1. Quantitative results of network outputs of different
positions of the attention modules.

MAE ↓ PSNR ↑ SSIM ↑

Input 39.55±16.07 15.68±3.17 0.63±0.05

ResNet 6.35±2.15 30.02±2.46 0.89±0.08

@ 1st 5.94±4.33 31.12±2.98 0.92±0.07

@ 2nd 5.56±2.32 31.21±3.01 0.92±0.06

@ 3rd 5.98±2.37 30.49±2.67 0.89±0.07

@ 4th 5.65±2.30 31.14±2.81 0.90±0.09

@ All 5.13±1.52 32.03±2.13 0.92±0.06

In this experiment, we found that applying an attention module to any single layer could
improve the model performance; this indicates the effectiveness of the attention module. In
addition, we can see that applying an attention block to a layer had a similar effect on the model
performance. By contrast, applying the attention module to every layer (@ All) achieved the best
performance.

4.1.2. Effects of different attention modules

We investigated the influences of the choices of different attention modules on a network based on
ResNet. In this experiment, five networks were trained with different attention modules—GAP,
SEM, CAM, SAM, and CBAM—as mentioned in Section 2.2. The experimental results are listed
in Table 2. We observed that the networks with GAP, SEM, and CAM achieved significant gains
in stripe artifact reduction compared with artifact-distorted LSFM images. The performance of
SAM is better than that of GAP, SEM, and CAM, indicating that the allocation of the spatial
weight is more effective. The results of CBAM, which combined SAM and CAM, yielded the
best performance compared with other attention modules. It is believed that CBAM can obtain
the various important channels of feature maps and learn the information of different regions in
the image to distinguish the sample information and stripe artifacts.

4.1.3. Effects of content loss

In this comparative experiment, we studied the influences of the content loss on the model
performance following the application of the MAE as the loss function. The comparative results
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Table 2. Quantitative results of network outputs of different
attention modules.

MAE ↓ PSNR ↑ SSIM ↑

Input 39.55±16.07 15.68±3.17 0.63±0.05

GAP 5.89±2.18 30.95±2.75 0.91±0.05

SEM 6.59±2.29 29.96±2.61 0.91±0.05

CAM 6.64±1.98 29.60±2.21 0.89±0.05

SAM 5.63±2.30 31.13±3.09 0.91±0.06

CBAM 5.13±1.52 32.03±2.13 0.92±0.06

are presented in Table 3 and Fig. 4. The network with content loss achieved better performance
than that without content loss in terms of MAE, PSNR, and SSIM. This is partly because the
use of content loss can preserve the image details and content information. The benefit of the
content loss can be clearly observed in Fig. 4. It is suggested that the use of content loss can
reduce stripe artifacts in the input images while maintaining useful content information.

Fig. 4. Representative results obtained from the model with and without content loss. We
selected three typical results as examples to elucidate the difference between results.

Table 3. Quantitative results of network outputs with and without
content loss.

MAE ↓ PSNR ↑ SSIM ↑

Input 39.55±16.07 15.68±3.17 0.63±0.05

w/o content loss 6.16±2.16 30.22±2.53 0.89±0.05

w/ content loss 5.13±1.52 32.03±2.13 0.92±0.06
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4.2. Comparison with existing destriping methods

We compared our proposed network with other existing classic algorithm-based and deep-
learning-based destriping methods on different testing datasets of artifact-distorted LSFM images.
The following methods were chosen:

• VSNR: We chose the variational algorithm developed by Fehrenbach et al. [16], as it can
be applied to the removal of stationary noise such as stripes from microscopy images.

• MDSR: We selected the algorithm reported by Liang et al. [18] because they designed a mul-
tidirectional stripe removal method following the application of the fast Fourier transform
in the nonsubsampled contourlet transform domain to shrink the stripe components.

• UNet-based networks (UNet): The model proposed by Wang et al. [20] was chosen, as
the UNet models are extensively used in designing networks for fluorescence microscopy
image restoration.

• Self-attention mechanism-based networks (AttNet): The self-attention mechanism-based
network (Ko et al. [39]) was selected because it achieved a noticeable performance in
various artifact reduction tasks compared with other models.

The experimental results are summarized in Table 4 and Fig. 5. The performance of our network
was better compared with those of the existing methods in both metrics and visual inspection.

Fig. 5. Representative results obtained from different destriping methods. We selected
representative samples from the three testing datasets and showed the corresponding results
obtained with different methods.

4.2.1. Testing dataset at a known angle

We first tested the effect of each method for handling stripe artifacts of a known angle. In
this experiment, our Att-ResNet efficiently eliminates different stripe artifacts and achieves
gains in the range of 0.33–4.23 in PSNR and 0.01–0.09 in SSIM (σ=0.5). For the two classic
algorithm-based methods, we set the angle parameters to 0, 45◦, and 135◦ to deal with the
different testing images, and they are effective for destriping tasks. PSNR of MDSR is 0.81
(σ=0.3) and 0.29 (σ=0.7) higher than our Att-ResNet. However, some visible artifacts are not
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Table 4. Quantitative results of outputs of our Att-ResNet and other destriping methods under
different testing datasets.

Method Input VSNR MDSR UNet AttNet Att-ResNet

Testing Dataset at a Known Angle

σ=0.3
(n= 2880)

MAE ↓ 25.40±10.50 6.51±2.78 5.57±2.54 6.03±1.78 10.77±4.87 6.06±1.50
PSNR ↑ 19.46±3.13 30.17±3.62 31.37±3.48 30.51±2.30 25.84±3.01 30.56±1.85
SSIM ↑ 0.64±0.11 0.90±0.10 0.92±0.08 0.82±0.08 0.83±0.07 0.92±0.05

σ=0.5
(n= 2880)

MAE ↓ 36.10±14.85 7.59±3.13 6.37±2.69 6.84±3.35 10.25±4.34 6.01±1.33
PSNR ↑ 16.38±3.04 28.91±3.83 30.22±3.08 29.81±2.90 26.23±2.77 30.55±1.67
SSIM ↑ 0.49±0.11 0.86±0.12 0.88±0.10 0.89±0.08 0.81±0.06 0.90±0.06

σ=0.7
(n= 2880)

MAE ↓ 44.39±18.32 8.73±3.55 6.35±2.27 6.75±1.67 10.55±3.95 6.73±1.45
PSNR ↑ 14.58±3.03 27.78±4.10 29.89±2.66 29.50±1.96 25.85±2.38 29.60±1.67
SSIM ↑ 0.39±0.10 0.81±0.14 0.85±0.11 0.83±0.08 0.78±0.06 0.88±0.07

Testing Dataset at One Random Angle

σ=0.3
(n= 2880)

MAE ↓ 29.02±11.02 7.74±0.08 7.97±2.14 5.77±3.37 6.04±2.26 5.30±2.49
PSNR ↑ 18.49±3.20 26.57±1.75 26.72±1.85 29.94±5.27 30.37±2.76 31.79±3.31
SSIM ↑ 0.74±0.09 0.75±0.08 0.76±0.07 0.89±0.12 0.90±0.08 0.92±0.06

σ=0.5
(n= 2880)

MAE ↓ 39.55±16.07 12.37±2.54 10.47±2.21 6.81±2.70 6.60±5.28 5.13±1.52
PSNR ↑ 15.68±3.17 23.22±2.02 23.73±2.19 29.34±2.97 29.17±5.74 32.03±2.13
SSIM ↑ 0.63±0.05 0.65±0.08 0.65±0.08 0.87±0.08 0.85±0.12 0.92±0.06

σ=0.7
(n= 2880)

MAE ↓ 50.48±19.31 13.40±1.98 12.90±2.60 8.22±3.09 7.38±6.92 5.79±2.35
PSNR ↑ 13.65±3.11 21.10±1.75 21.77±2.60 27.47±2.80 28.38±6.05 31.12±2.61
SSIM ↑ 0.53±0.07 0.54±0.06 0.58±0.08 0.80±0.08 0.81±0.11 0.90±0.07

Testing Dataset at Two Random Angles

σ=0.3
(n= 2880)

MAE ↓ 41.67±16.57 10.92±1.98 10.64±2.04 5.58±2.94 6.53±1.54 5.66±2.31
PSNR ↑ 15.36±3.34 24.66±1.56 24.51±1.60 30.52±4.43 29.76±2.28 31.18±2.92
SSIM ↑ 0.61±0.08 0.67±0.07 0.65±0.07 0.89±0.11 0.89±0.11 0.92±0.07

σ=0.5
(n= 2880)

MAE ↓ 56.42±22.69 15.69±2.50 15.37±2.56 6.49±1.49 6.97±4.28 5.90±2.29
PSNR ↑ 12.73±3.35 21.38±1.51 21.14±1.56 29.73±2.19 29.33±2.16 30.85±2.80
SSIM ↑ 0.46±0.06 0.55±0.08 0.52±0.07 0.86±0.11 0.86±0.10 0.91±0.06

σ=0.7
(n= 2880)

MAE ↓ 66.32±26.88 20.30±3.10 19.85±3.13 7.22±1.65 5.92±3.08 5.99±2.29
PSNR ↑ 11.34±3.37 19.16±1.49 18.90±1.60 28.64±1.95 29.82±4.45 30.68±2.70
SSIM ↑ 0.37±0.05 0.47±0.07 0.43±0.07 0.79±0.10 0.82±0.09 0.89±0.06

eliminated from the images, (see the red arrows in Fig. 5) and the consumption of each image
requires approximately 180 s for VSNR and 60 s for MDSR. In addition, different parameters
need to be adjusted when the two methods deal with different artifacts, thereby increasing the
complexity of processing. By contrast, our method not only effectively removes different artifacts
but also exhibits fast performance, as only 1 s is required to process one image. The performance
of UNet and AttNet is comparable with that of our method in terms of PSNR and SSIM.

As shown in Fig. 6, the stripe artifacts cause the values of the original image to fluctuate
violently, which seriously destroys the original structure. Our Att-ResNet can remove the artifacts
and recover the distorted image to have a similar distribution as the ground truth label. MDSR and
VSNR can restore images with remnant artifacts, especially those distributed in the background.
The recovery ability of AttNet and UNet was slightly inferior to that of our method.
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Fig. 6. Horizontal line profiles of the representative results (σ=0.5) at row 378 and from
column 380 to 420. The top row shows the enlarged region-of-interest of (a) the ground
truth label, (b) artifact-distorted image (input), and results from (c) VSNR, (d) MDSR, (e)
UNet, (f) AttNet, and (g) our method. The graph shows the normalized image values along
the red lines on the top from left to right.

4.2.2. Testing dataset at one random angle

In this experiment, we set the angle parameters to 0 for MDSR and VSNR to deal with the
horizontal stripe artifacts with deflection that ranged from -11◦ to 11◦ subject to the configuration
of the commercial LSFM system. As shown in Fig. 5, the two classic algorithm-based methods
cannot eliminate the stripe artifacts in the images because of the variation in the angle parameters
that resulted in a significant decline in their performance. Our Att-ResNet achieves gains in
the range of 5.07–10.02 in PSNR and 0.17–0.36 in SSIM compared with VSNR and MDSR
methods. Our method also achieves the best performance, with gains in the ranges of 1.42–3.65
and 0.02–0.10 in terms of the PSNR and SSIM, respectively, compared with the UNet and AttNet
methods. Besides, from Table 4, with the increase of σ, the performance of UNet and AttNet
decreases (1.99–2.47 in PSNR and 0.09 in SSIM), while the performance of our Att-ResNet
remains stable, which indicates the generalization performance of our method.

We studied the influence of angle parameters on the two classic algorithm-based methods,
VSNR and MDSR, by adding disturbance δ (δ ∈ [0,10◦]) to the angle parameters and applying
the two methods on the testing dataset at a known angle (σ=0.5). The evaluation metrics of the
results are shown in Fig. 7.

From Fig. 7, our Att-ResNet is not affected by the angle parameters (PSNR= 30.55 and
SSIM= 0.90). When the angle parameters are accurate (δ=0), both VSNR and MDSR obtain
satisfactory results (see Table 4). However, the performance of VSNR and MDSR decreases
greatly when disturbance δ is added to the angle parameter. When disturbance δ is in the range
of [0, 1◦], their performance gradually decreases, and when it is in the range of [1◦, 10◦], the two
methods fail to remove the stripe artifacts. From Fig. 7, we can find that both the two classic
algorithm-based methods are highly sensitive to the angle parameter, among which VSNR is
more sensitive. When the disturbance δ is more than 1◦, these two methods cannot effectively
remove the stripe artifacts in the image, indicating the high dependence of these two methods on
the accuracy of the angle parameters.
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Fig. 7. PNSR and SSIM of the results under different disturbance δ (δ ∈ [0, 10◦]). (a) is
the PSNR of the testing dataset at a known angle, and (b) is the SSIM of the testing dataset
at a known angle.

4.2.3. Testing dataset at two random angles

Finally, we applied the destriping methods to the testing dataset at two random angles, as shown in
the last row of Fig. 5. The angle parameters of MSDR and VSNR were set as the previous testing
dataset at one random angle. The two classic algorithm-based methods are still less effective in
eliminating stripe artifacts. By contrast, the DL-based methods are successful in distinguishing
stripe artifacts and samples and in eliminating artifacts at different angles in the images. However,
some point noises appeared in the results of AttNet, which affected the overall quality of the
image. In these testing experiments, stripe artifacts severely affected the image quality (PSNR
and SSIM of the input were the lowest among the three testing datasets). Nonetheless, our model
still effectively eliminated the artifacts, restored the image, and resulted in the best performance
in both metrics and visual inspection.

We analyzed the line profile of each method on a testing dataset at two random angles (σ=0.5).
In Fig. 8, we found that the two classic algorithm-based methods are inefficient in the destriping
task, and the DL-based methods yielded line profiles similar to the ground truth profiles compared
with the classic algorithm-based methods. The line profile of our method is very close to the
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Fig. 8. Horizontal line profiles of the representative results (σ=0.5) at column 119 and
from row 141 to 181. All remarks are the same as Fig. 6.

Fig. 9. Destriping results of LSFM images for different destriping methods.
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ground truth, especially in the background, demonstrating that our method can restore the images
in the presence of complex stripe artifacts.

4.3. External testing on LSFM images with intrinsic stripe artifacts

In this section, we evaluate our Att-ResNet on LSFM images with intrinsic stripe artifacts in
various biomedical applications. We validated our method using LSFM images with intrinsic
stripe artifacts as the input, as shown in the first column of Fig. 9. As the stripe artifacts in the
images are horizontal artifacts, we set the angle parameters of MDSR and VSNR to 0, and use
the models trained by testing dataset at known angle for validation. From Fig. 9, all methods
can effectively eliminate artifacts. For MDSR and VSNR, because of the accuracy of the angle
parameters, the artifacts can be effectively removed. However, some visible artifacts are not
eliminated from the images, (see the red arrows in the second and third column of Fig. 9).
For UNet, in addition to some residual artifacts, it may blur the details of the images (see the
blue arrow in Fig. 9). AttNet can effectively remove stripe artifacts, but it will introduce some
additional ghosting artifacts into the image, which degrades the image quality (see the green arrow
in Fig. 9). Our method can eliminate the stripe artifacts while preserving the image information.

For LSFM images with intrinsic stripe artifacts, due to the lack of ground truth for reference,
we evaluated the performance of different methods by analyzing the line profile of each method
of the representative LSFM image. In Fig. 10, the stripe artifacts cause the values of the original
image to fluctuate violently, especially in the background (see the black curve). After destriping,
the number of the spikes on the line profile will decrease, and the normalized image values
of the background part will decrease and tend to 0. From Fig. 9(b)–9(f), all methods can

Fig. 10. Horizontal line profiles of the representative LSFM image with intrinsic stripe
artifacts at column 1380 and from row 480 to 520. The top row shows the enlarged
region-of-interest of (a) the original image, and results from (b) VSNR, (c) MDSR, (d) UNet,
(e) AttNet, and (f) our method. The graph shows the normalized image values along the red
lines on the top from up to down.
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effectively remove artifacts, but some visible artifacts still remain in the result of VSNR and
MDSR. Moreover, AttNet introduces some additional ghosting artifacts into the image. UNet
and our Att-ResNet obtain a satisfactory result, reducing the number of spikes and the image
values of the background part. Thus, UNet and Att-ResNet can better eliminate the artifacts
while preserve the information of the image.

5. Discussion

The destriping of LSFM images is a challenging task that needs to be addressed by many recently
developed methods. Both hardware improvements and classic algorithms have been proposed to
eliminate stripe artifacts. However, hardware improvements still suffer from stripe artifacts in
low-brightness or dense samples, which may affect the imaging speed and field of vision. For
the two classic algorithm-based methods, VSNR and MDSR, the performance is satisfactory
when dealing with artifacts with known angle (see Table 4). However, the two methods are
sensitive to the angle of artifacts. And in practice, it is impractical to obtain all the angles of the
artifacts from the LSFM images because the directions of the stripe artifacts are random and
various, thus calculating all angles is time-consuming and complex. Moreover, the stripe artifacts
are integrated into image. Therefore, artifacts cannot be effectively separated from the image
information and measured accurately. When calculating the angle, the deviation of one pixel may
cause an error of more than 1◦. From Fig. 7, these two methods cannot effectively remove the
stripe artifacts under this error. Although a more accurate result can be obtained by calculating
multiple approximate angles, this can hardly be realized in practical application considering the
time cost of the two methods (>60 s per image), which require tremendous computational effort.

In this study, we proposed a DL-based method to effectively eliminate stripe artifacts from
LSFM images. Unlike the classic destriping methods, our methods are based on the powerful
prediction capability of deep convolutional networks to deal with the LSFM image distorted
by different artifacts. In our Att-ResNet, we applied the residual blocks with the attention
mechanism in our model to learn the features of the sample and different stripe artifacts in the
image. We used residual blocks to increase the modeling power [40,41]. This learns only the
difference between the input and the target output and transforms the artifact-distorted image
to an artifact-reduced image efficiently. In addition, with CBAM, the importance of different
regions and channels of the image was learned, and the value of the feature map was selectively
attenuated or amplified according to their importance for more effective training. Moreover,
CBAM increases the modeling capacity of the network to effectively eliminate artifacts and restore
the image. We also use content loss to improve the performance of our model. Content loss is
widely used in image processing algorithms of medical images, including artifacts elimination
of CT images [39,42], super-resolution reconstruction of MRI images [43], and generation of
synthetic digital mammography images [44]. In these works, a VGG network pre-trained on
ImageNet is commonly used as the feature extractor to calculate the content loss. We carried out
experiments on the content loss calculated by feature extractor pre-trained with ImageNet and
LSFM images. The results can be found in Table S1 and Table S2 in Supplement 1. In Table S1
and Table S2, content loss can improve the performance of our model and the results of model
pre-trained with ImageNet is better because the data scale and data diversity of ImageNet help the
model to better extract the features in the image. Thus, in our model, we used conv4-3 from the
VGG-19 network [37] pre-trained with ImageNet [38] as the feature extractor. This feature-level
loss helped preserve content information and image details.

Our method was performed on the acquired images without the additional requirement
of LSFM hardware improvement. In addition, Att-ResNet contributes to simple, fast image
restoration and is suitable for images of different sizes. To verify the destriping ability of our
Att-ResNet, we designed three degradation models to generate stripe artifacts in actual images
to obtain the corresponding artifact-distorted images and ground truth LSFM image pairs. Our

https://doi.org/10.6084/m9.figshare.19102172


Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1309

Att-ResNet successfully restored stripe artifacts caused by the degradation models. Furthermore,
our Att-ResNet was validated to eliminate the intrinsic stripe artifacts from the actual LSFM
images. The performance of Att-ResNet was also quantitatively and quantitatively analyzed
and verified to be better than the existing methods. The proposed method can be extended to
eliminate different types of stripe artifacts in the LSFM images of ex vivo samples. Moreover, it
is feasible to further improve the processing speed by optimizing our model, thus our method
has the potential for processing in vivo imaging of neural activities and heart beating and can
be applied to the processing of LSFM images in dynamic living samples. Moreover, it can be
applied in the destriping task of other microscope images, such as scanning electron microscopy
images, selective plane illumination microscope images, and FIB-nanotomography images.

Despite these advantages, our network remains highly dependent on data. The original image
is regarded as the ground truth label in the constructed datasets, and artifacts and noise inevitably
exist in the original image. The network can eliminate the artifacts and noise caused by the
degenerate model. However, because of the presence of artifacts in the ground truth, some light
artifacts in the original image cannot be eliminated completely. For the images with background
noise, the noise will be regarded as effective information while removing artifacts, which would
be remained as speckle noise. At the same time, some details in the image may be eliminated for
being recognized as noise. This problem can be avoided by adding a degradation model to LSFM
imaging of well-cleared samples to construct image pairs or by generating simulated LSFM
images to avoid artifacts in ground truth labels. Moreover, a more complicated degradation
model can be created to simulate complex noise, artifacts, and blur patterns in LSFM images.
Additionally, a feature-extracted network can be designed pre-trained with available datasets to
learn the sample information in the LSFM images of well-cleared samples and distinguish the
noise information such as artifacts in the image. And the loss of the model can be upgraded using
the designed network as a feature extractor to help improve the performance of main model, so
as to eliminate the noise on the premise of preserving the image details as much as possible in
practical application.

6. Conclusion

We proposed a DL method that combined a self-attention mechanism to eliminate stripe artifacts
in LSFM images. Different degradation models were generated to simulate stripe artifacts in
real LSFM images. Our method was validated by comparing it with two classic methods and
two DL methods on the simulated data. The results showed that our method can effectively
eliminate stripe artifacts in different datasets, thus overcoming the problem of angle sensitivity of
classic methods for different stripe artifacts, and showing the ability to achieve fast performance.
Moreover, our method was validated based on the destriping task on LSFM images with intrinsic
stripe artifacts. Future studies will include the reduction of noise from different microscopic
images and improvement in the temporal and spatial resolutions of the images.
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